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Abstract. The objective of this work is to discuss a more general one-dimensional diffusion equation that accounts for certain 
aspects such as the variation of a parameter that describes the relaxation time of the mass flux and also the presence of a 
potential field. The equation will have properties similar to a an hyperbolic equation or parabolic equation according to which 
values of the relaxation parameter or the potential field we consider. In the hyperbolic case we deal with some discontinuities. 
We apply a numerical scheme to solve this equation, which consists of using an inverse Laplace transform algorithm. The 
Laplace method is used to remove the time-dependent terms in the governing equation and boundary conditions. For a constant 
potential field general solutions can be determined. On the other hand for a non-constant potential field, a spatial discretisation 
must be considered. We will study the convergence of the numerical scheme based on the inverse of Laplace transform and 
present some test problems. 
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INTRODUCTION 

Diffusion problems that describe physical phenomenon is widespread in various branches of science and engineering 
[1]. Most of these problems are described with Fourier's law or Pick's law. The dynamics of a Brownian particle, for 
instance, is described by 

dC d^C 

where C is the mass concentration of the Brownian particle and D is the diffusion coefficient. This equation can be 
derived, at a macroscopic level, by combining the Pick's law of diffusion 

dC 
J=-D^ (2) 

dx 

with the continuity equation 
dC dJ 

where / represents the mass flux. When an uniform force field such as gravitation, exists, an uniform flow is produced 
with the terminal velocity determined by the balance of the driving force and the frictional force from the surrounding 
fluid acting on the particle [2]. Therefore, the flow is given by 

dC 
J=-D—-PC, (4) 

dx 

where 

my dx 

V is the potential field, m is the particle mass and y the friction constant. The diffusion constant can also be written as 
given by 

D=KB — , (6) 
my 
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where KB is the Boltzmann constant and T is the temperature of the fluid. 
It is well known that these problems may break down, specially if we are interested in the transient problem in 

an extremely short period of time, or for low temperature [3]. In order to describe the mass diffusion with a finite 
speed of propagation, we must consider the so-called non-Fickian diffusion equations. Das [4], [5] has derived a non-
Fickian diffusion equation in the presence of a potential field from the Kramers equation. This equation is a hyperbolic 
equation although, the corresponding Fickian equation is a parabolic equation. 

To accommodate the finite propagation speed, the generahzed Tick's law can be written as [5] 

where 9 G [0,1] is the parameter that measures the propagation speed of the mass wave and can be regarded as the 
relaxation time of the mass flux. 

Strack [6] has employed a flux similar to (7) with P = 0 but in three-dimensional form in order to model the non-
Fickian behaviour of transport in porous media with small-scale heterogeneities. 

Elimination of the mass flux / between equations (3) and (7) leads to the following equation 

dC d^C d , , d^C 

For our problem we consider the initial conditions given by 

C(x,0) = 0, xG[0,oo) (9) 

dt 
^dO^ = 0, xG[0,oc) (10) 

and the boundary conditions 

c(o,o = git), t>o (11) 
C(oo,f) = 0, f > 0 . (12) 

Note that equation (8) turns to the classical advection diffusion equation for 0 = 0 and it is a parabolic equation. 
In this work we study equation (8) which is a more general equation than the ones presented in similar works, such 

as [3] and [7]. This equation takes in consideration two types of fluxes which are caracterised by the parameter 9. The 
parameter 9 is directly related with the parabohc or hyperbohc behaviour of equation (8). We use a numerical method 
that can be apphed in both cases, the parabohc case and the hyperbohc case being the later usually more difficult to 
handle. We also study carefully the discretisation errors. 

THE NUMERICAL SCHEME 

In order to remove the f-dependent terms, we apply the Laplace transform to the equation (8), where the Laplace 
transform C of the mass concentration C is defined by 

C{x,s)= exp{-st)C{x,t)dt. (13) 
Jo 

We obtain the ordinary differential equation 

d^C 2^ . d fP 
I^-'^^+TAD^^-' '''^ 

1 /9 

where Xe = {{9s^ + s) /D) and i' is a complex variable. 
If P is a constant, then we easily have the solution of equation (14): 

C{x,s)=exp{-{P/2D)x) (he''e^+ k2e-''e^) , (15) 
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for bg = J{P/D)^ +4Xg/2. From the boundary conditions (11) we get 

C{0,s)=g{s) and C(oo,^)=0. 

The substitution of these conditions in (15) determine the analytical solution of C (x, f) as follows 

C{x,s)=g{s)exp{-[{P/2D)+be]x). 

(16) 

(17) 

The next step is to determine C{x,t) by using the numerical inversion of the Laplace transform. We may easily see 
that, for f > 0 and each value of x. 

C{t) = -exp{p) / Relc{s)exp{i(ot)\ d(0, (18) 

where s = 7 + i(0. Using the Trapezoidal rule with the step size h = n/T, for 0 < f < 2T, we obtain the following 
discretised approximation: 

C{t 
1 exp(7t) c{r) ^ T , \?^f ikn\ fikm\ ^ R e C 7 + ^ exp — 

k=i T J \ T J 
-ET, (19) 

where Ej is the discretisation error. Assuming Ej sufficiently small, then 

C(0«-exp(7r) cir) 
k=i 

^ R e ^ C 7 + ^ ; ^ )exp 
ikn f ikm \ 

(20) 

We now apply the quotient-difference algorithm, proposed in [7], to calculate the series in (20) by the rational 
approximation in the form of a continued fraction. With the purpose of applying this scheme to (20), set 

V- jfc C(7) " - / ikn\ fikm\ 

k=0 k=0 

where s = r+'^,k = 0,l,...,ao = jC{f), ak = C{r+'Y) andz = exp(f^). 
Let the M-th partial fraction v {z,M) be 

v{z,M)=do/{\+diz/{l + d2z/{l + --- + dMz))). 

where the coefficients rfjj's are obtained by recurrence relations from the aj;'s. We have that 

CO 

£a,z*^ = v(z,oc)=v(z,M)+£f, 

where Ef is the truncation error associated to the truncation of the continued fraction. Then 
C{t) = l-exi^{rt)Re{v{z,M)+Ef) -Ej. 

(21) 

(22) 

(23) 

(24) 

and the approximation for C(f) is given by 

C(0«-exp(7r )Re{v(z ,M)} . (25) 
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DISCRETIZATION ERROR 

We have two errors controlling our discretisation. The first error is related to the integral approximation where 

C{t) = CT{t)-ET (26) 

for ^ 

CT{t) = -exp{p) £ R e ^ C ( 7 + — ) e x p 
k=i \ T J 

(27) 

and the error Ej, according to Crump [8], is given by 
CO 

ET=Y.e-^"^^Ci2nT + t). (28) 
n=l 

If we assume that our function is bounded such as \C{t)\ < Me"', the error can be bounded by 

ET<Me'^'l^e-''^rT^ e _ Q < . < 27. (29) 
n=l '^ 

It follows that by choosing y sufficiently larger than a, we can make Ej as small as desired. For practical purposes 
and in order to choose a convenient y we use the stricter inequality which bounds the error 

The second error, Ef comes from the approximation of the continued fraction v{z). This error is controled by 
imposing a tolerance TOL such as 

\v{z,Mk)-v{z,Mk-i)\<TOL (31) 

and then we have 

C(0 « ^exp(yt)Re{AMJBM,}. (32) 

In practise it is very difficult to choose an M according to a theoretical result since the analytical truncation errors 
we are able to get for continued fractions are strongly dependent on the rf(s. Although there is a lack of such general 
results, for some specific test problems we are able to apply some of the theoretical results presented in [9]. 

FINAL REMARKS 

Additionally to what we describe here, when P is non-constant a spatial discretization needs to be considered and 
discussed. We have used finite difference schemes for these cases. To analyse the order of convergence of the numerical 
schemes we have run some test problems. We have also observed how the solution to this problem is affected by 
changing the parameters 9 and P. 
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